基本情况
胡卓锋,男,博士,中山大学环境学院百人计划副教授,博士生导师。2011年在中山大学硕士毕业,2014年在香港中文大学博士毕业,2018年加入中山大学环境学院。胡卓锋副教授在过氧化物的原位制备与应用、分子氧活化、二电子水氧化技术、高级氧化、二氧化碳资源化利用、第一性原理理论计算等研究领域取得突出成果。发表论文110余篇,第一/通讯作者论文70篇,单独一作15篇,单独通讯20篇,主要包括4篇Angewandte Chemie International Edition(其一为热点论文、封底)、1篇Journal of the American Chemical Society、2篇Nature Communications、2篇Environmental Science & Technology(其一为封面)、6篇Advanced Functional Material(其一为卷头插画)、14篇Applied Catalysis B: Environment and Energy等。一区论文60篇,封面文章5篇,6篇SCI高被引论文,受邀撰写综述 2 篇:Green Chemistry (2017,19,588)和Chinese Chemical Letter (2019,30,2089)。合作撰写专著章节一章(ACS, ISBN: 9780841236554)。授权专利14项。
欢迎对环境、材料、化学、物理等学科感兴趣的本科生、硕士、博士、博士后与专职科研人员加盟。
联系方式
地址: 广州大学城外环东路132号中山大学东校区博彩网站 (510006)A318房
E-mail: [email protected]
微信:
教育经历
2004.9-2008.7,中山大学,物理科学与工程技术学院材料物理专业,学士
2008.9-2011.7,中山大学,物理科学与工程技术学院材料物理与化学专业,硕士
2011.8-2014.7,香港中文大学,化学系,博士
教学工作
本科生课程:
《专业学术制图技术》,中山大学一流本科课程
《室内空气污染与净化》
《Photoshop基础与论文绘图设计技巧》
《大气污染控制工程实验》
《环境保护前沿讲座》
《数据库与信息工程》
《环境材料》线上课程
《清洁能源》
研究生课程:
《环境问题研究创新思维与方法》
《环境科学与工程前沿讲座》
获奖/荣誉
广东省第七届高校(本科)青年教师教学大赛二等奖
2023年中山大学第11届教学竞赛一等奖
2023年中山大学环境学院教学竞赛一等奖
2022年中山大学第10届教学竞赛优胜奖
2021年中山大学环境学院教学竞赛优胜奖
第四届全国大学生市政环境类创新实践能力大赛金牌指导老师奖
研究方向:
分子氧活化与高级氧化水处理
元素红磷催化剂
水热碳环境催化剂
二电子电催化水氧化产过氧化物
第一性原理模拟理论计算
一,分子氧活化与高级氧化技术
氧气占大气的21%,但氧气活化难、需要外加光与电能驱动、氧气利用率低。基于此,我们开发了等多种材料,可实现在无光无电下高效活化氧气产双氧水与羟基自由基。我们发展合成稳定单原子金属的方法(J. Am. Chem. Soc., 2022, 144, 22075)。利用该方法,首次得到稳定的一价铜Cu+,并自发高效还原氧气产羟基自由基。在无光无电输入下高效活化氧产生高达502 mmol g-1 h-1的羟基自由基,转换频率(Turnover frequency)高达0.78 h-1,是目前固体催化剂利用氧气自发活化产羟基自由基的最高记录。该材料在宽pH范围(2-10)对珠江水、谷围河水、湖水、自来水等实际水体中的系列污染物(布洛芬、诺氟沙星、双酚A、苯酚、硝基苯、邻苯二甲酸二乙酯等)高效去除。相关工作作为封面文章发表在顶级环境期刊上(Environ. Sci. Technol., 2023, 57 (12), 5024-5033)。相关技术获授权专利3项(ZL202110647997.X,ZL202110654352.9,ZL202110531578.X)。
二,元素红磷环境催化剂
磷元素是生态环境中非常重要的元素。一直以来,红磷被认为是一种消耗品,往往用于制备火柴和阻燃剂。但最近发现,在阳光下,红磷可把水分解,产生清洁能源氢。与其他化学燃料相比,氢的能量密度非常高,氢无毒无害,燃烧后只有水,是一种新型的对环境无污染的高效洁净能源。这为红磷的应用打开了一个崭新的思路。成功合成了纤维相红磷,这种高度结晶性的红磷产氢效率比商用无定形红磷高800倍!这比之前报道的所有的元素光催化剂的产氢率都高。相关工作发表在国际顶级期Angewandte Chemie International Edition(2016, 55, 9580)上。该文章被编辑选为当期杂志的 hot paper,并入选为 cover。此外,通过理论计算,分析了纤维相红磷的半导体性能,证明其在光照下产生的空穴也可以把水氧化成氧气或自由基,而自由基像羟基自由基等可以降解环境污染物,相关研究发表在Small(2021,2008004)上。
目前,红磷工作的商业价值也得到了商界及政府的关注。多家公司前来商议红磷环境催化商业化的可能性。该工作也多次出现在大型展览上,如香港会展中心举办的International ICT Expo上,并受到一致好评。红磷的工作也得到香港政府的高度重视,政府多次派出记者采访,并拍摄了相关宣传片投放到香港政府官方网站上,作为香港一项创新性示范工作来推广宣扬。
三,水热碳环境催化剂
通过水热法可将存量巨大、可再生、成本低廉的生物质废料转化成水热碳,在太阳光照下产生光生电子还原氧气产生双氧水,产率高达1160 μmol gcat-1 h-1。氧的活化没有明显能量垫垒,有利于氧气的活化(Environ. Sci. Technol., 2017, 51, 7076)(ACS Catal., 2021, 11, 14480)。利用含铜废水与生物质制备了纳米铜-水热碳,在无光无电下也能高效活化氧气产生羟基自由基与双氧水(Appl. Catal. B: Environ., 2022, 319, 121918)。在宽pH范围内高效降解硝基苯、苯酚、布洛芬、双酚A等污染物。相关技术获授权专利5项(ZL202010055787.7,ZL202010055779.2,ZL202010879855.1,ZL202010880987.6,ZL202110757870.3)。
四,2电子电催化水氧化产过氧化物
双氧水是重要的化工原料,被广泛应用在医疗、工业生产和环境治理等多个领域。特别是环境治理中高级氧化技术重要的氧化剂。当前工业制备双氧水采用的2-乙基蒽醌(EAQ)法存在以下问题:它需要大型复杂的设备、氢源和昂贵的贵金属催化剂,并且生产的高浓度双氧水不便于运输和贮存,容易造成自燃、爆炸等安全事故。
提出新型水氧化技术,把水分子中的氧元素氧化成双氧水(2H2O=H2O2+H2),充分保证氧元素供给,突破氧气含量的局限性。我们在钨酸盐上实现了高效二电子电催化氧化水产双氧水降解抗生素,产率高达360000 μmol gcat−1 h−1。目前该方法制备的双氧水价格低至0.14元/mol,远低于工业法制备的0.8元/mol(工业大桶装)和10元/mol(日常便捷装)。相关研究成果发表在国际顶级化学期刊Angewandte Chemie International Edition(2020, 59, 20538)和Nature Communications(2023, 14 , 1890.)上。进一步,发现了一种全新的不依赖水中OH的二电子反应机制,在碳式碳酸铜(Cu2(OH)2CO3)催化剂上,利用晶格”OH”做为媒介实现二电子水氧化反应,指出其与水中其它阴离子相互作用来参与到水氧化过程中产生双氧水。相关研究被Nature Communications(2024, 15, 10456)接收。
五,泛函密度材料模拟计算
近年来,第一性原理计算在材料设计和具体应用方面起着越来越重要的作用。前理论计算是做催化研究的重要手段,通过理论计算,可以预测材料的电子结构,帮助对具体的反应过程进行解说,通过结合实现数据与计算结果,提出新的反应机理。目我们前期积累了大量理论计算的经验,主要进行如下计算:
不同类似催化剂性质的分析
1)半导体材料结构与能带计算(Z. F. Hu*, et al. Angewandte. Chemie. Internation. Edition. 2016, 55, 9580)
2)无定形材料结构的计算(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 342, 123704)
3)金属性材料结构的计算(Z. F. Hu*, et al. Advanced Functional Materials. 2016, 201600239)
4)分子筛材料计算(Z. F. Hu*, et al. Small, 2023, 202300114,Z. F. Hu*, et al. Advanced Energy Materials, 2024, 14, 38)
5)两相界面电子迁移与性质的计算(Z. F. Hu*, et al. Nano Research, 2021, 123704)
6)二维材料结构、电荷分布与能带的计算(Z. F. Hu*, et al. Small, 2021, 2008004)
7)COF等聚合物材料结构、电荷分布与能带的计算(Z. F. Hu*, et al, Advanced Functional Materal. 2022,202206579)
催化剂重要参数计算
1)电荷分布(bader),掺杂空位杂质原子对电荷分布的影响等,晶面上电荷分布,局域电荷分布、差分电荷等(Z. F. Hu*, et al., Environmental Science & Technology, 2017, 57, 5024)
2)电子与空穴迁移率与有效质量(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 342, 123704)
3)不同晶面上的电荷空间分布(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 342, 123704)
4)键能的计算(unpublish)
5) 态密度、晶体轨道哈密顿布局函数法COHP、(Z. F. Hu*, et al. Advanced Functional Materials. 2016, 201600239)
6) 分子轨道的空间计算与分析(Z. F. Hu*, etal. Chemical Engineering Journal, 2024, 500, 156975.)
7) 功函数(Z. F. Hu*, et al. Advanced Functional Materials, 2024, 34, 40, 2405527.)
8) 声子谱(Z. F. Hu*, et al. Small, 2021, 2008004)
催化剂过程中间体与机理的计算
1)表面催化中间体计算(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2023, 328, 122409)
2)NEB过渡态与中间体分析,包括结构变化与能量变化(Z. F. Hu*, et al., Journal of the American Chemical Society, 2022. 144, 48, 22075,Z. F. Hu*, et al., ACS Catalysis, 2021, 11, 14480)
3)催化剂表面中间体的红外光谱与拉曼光谱计算,结合原位红外拉曼光谱实验,分析催化机理过程(Z. F. Hu*, et al., Journal of the American Chemical Society, 2022. 144, 48, 22075)
催化剂外部影响的计算
外加电压的影响(Angewandte Chemie-International Edition 2020, 59 , 20538)
焓、熵的影响(Z. F. Hu*, et al. Nature Communications 2023, 14, 1890)
分子动力学(MD)计算(unpublish)
不同催化反应的计算
1)光催化与电催化还原水产氢计算(Z. F. Hu*, et al., Angewandte Chemie-International Edition 2022, 61, 202206579.)
2) 电催化与光催化水氧化,OH-O-OOH-O2过程计算(Z. F. Hu*, et al. Nature Communications 2023, 14, 1890)
3) 氧气还原2电子或4电子计算(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 347, 123771)
4) 二氧化碳还原计算,包括CO2分子吸附能,CO2分子活化,COOH,CC等中间体能量过程计算(Z. F. Hu*, et al. Journal of the American Chemical Society 2022, 144 (48), 22075-22082)
5)二电子水氧化产双氧水计算(Z. F. Hu*, et al. Nature Communications 2023, 14, 1890,Z. F. Hu*, et al. Nature Communications, 2024, 15, 10456)
6)苯甲醇氧化过程、过硫酸盐在不同材料上活化、双氧水在不同材料上活化的计算、小分子污染物的降解过程计算、甲烷氧化产甲醇乙烯的计算、硝酸根还原、尿素氧化、电催化产氢、有机催化反应等等。
欢迎有需要计算合作的同行联系我们!
学术任职
eScience杂志青年编委
Advanced powder materials杂志青年编委
Microstructure杂志青年编委
Process专刊编委
广东环境学会会员
中国环境科学学会会员
广东化学学会会员
美国化学会(ACS)会员;
担任广东省自然科学基金委、浙江省自然科学基金委等评审专家;
杂志通讯评审人:
Chemical Review
Angewandte Chemie International Edition
Nature Communication
Energy Environmental Science
Advanced Energy Materials
Advanced Functional Materials
Small
Applied Catalysis B: Environment and Energy
Chemistry of Materials
Chemical Engineering Journal
Chinese Journal of Catalysis
ACS Applied Material Interface
Chemical Communication
Applied Surface Science
代表性研究论文
- 1. Wang R., Luo H., Duan C., Liu H., Sun M., Zhou Q., Lu Y., Ou Z., Luo G., Yu C., Hu Z. F*, Crystal OH mediating pathway for hydrogen peroxide production via twoelectron water oxidation in non-carbonate electrolytes, Nature Communications, 2024, 15, 10456.
- 2. He, Q.; Li, H.; Hu, Z. F.*; Lei, L.; Wang, D.*; Li, T.*, Highly Selective CO2 Electroreduction to C2 H4 Using a Dual‐sites Cu(II) Porphyrin Framework Coupled with Cu2 O Nanoparticles via a Synergetic‐tandem Strategy. Angewandte Chemie-International Edition, 2024, 63, 33, 202407090.
- 3. Li, L. J.; Hu Z. F.*; Kang, Y. Q.; Cao, S. Y.; Xu, L. P.; Yu, L.; Zhang, L. Z.*; Yu, J. C.*, Electrochemical Generation of Hydrogen Peroxide from a Zinc Gallium Oxide Anode with Dual Active Sites, Nature Communications, 2023, 14 (1), 1890.
- 4. Zheng, N. C.; Li, L. J.; Tang, X. H.; Xie, W. Q.; Zhu, Q.; Wang, X. L.; Lian, Y. K.; Yu, J. C.; Hu, Z. F.*, Spontaneous Formation of Low Valence Copper on Red Phosphorous to Effectively Activate Molecular Oxygen for Advanced Oxidation Process, Environmental Science & Technology,2023, 57 (12), 5024-5033. 封面文章
- 5. Ou, H.; Ning, S.; Zhu, P.; Chen, S.; Han, A.; Kang, Q.; Hu, Z. F.*; Ye, J.*; Wang, D.; Li, Y.*, Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2 Conversion. Angewandte Chemie-International Edition, 2022 62, 202206579
- 6. Ou, H.; Li, G.; Ren, W.; Pan, B.; Luo, G.; Hu, Z. F.*; Wang, D.*; Li, Y.*,, Atomically Dispersed Au Assisted C-C Coupling on Red Phosphorus for CO2 Photoreduction to C2H6.Journal of the American Chemical Society, 2022. 144, 48, 22075
- 7. Li, L. J.; Hu, Z. F.*; Yu, J. C.* On-Demand Synthesis of H2O2 by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation, Angewandte Chemie International Edition, 2020, 59, 20538-20544.
- 8. Hu, Z. F.; Yuan, L. Y.; Liu. Z. F.; Shen. Z. R.*; Yu, J. C.* An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency, Angewandte Chemie International Edition, 2016, 31, 55, 9580-9585. hot paper and inside back cover
- 9. Hu, Z. F.; Shen, Z. R.*; Yu, J. C.* Converting Carbohydrates to Carbon-based Photocatalysts for Environmental Treatment. Environmental Science & Technology, 2017, 51, 7076-7083
- 10. Li, L.; Wang, L.; Jia, G.; Xu, L.; Chen, J.; Hu, Z. F.*; Yu, J. C.*, Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone. ACS Nano, 2024, 18, 48, 33142–33151.
2024年
- 1. Wang R., Luo H., Duan C., Liu H., Sun M., Zhou Q., Lu Y., Ou Z., Luo G., Yu C., Hu Z. F*, Crystal OH mediating pathway for hydrogen peroxide production via twoelectron water oxidation in non-carbonate electrolytes, Nature Communications, 2024, 15, 10456.
- 2. He, Q.; Li, H.; Hu, Z. F.*; Lei, L.; Wang, D.*; Li, T.*, Highly Selective CO2 Electroreduction to C2 H4 Using a Dual‐sites Cu(II) Porphyrin Framework Coupled with Cu2 O Nanoparticles via a Synergetic‐tandem Strategy. Angewandte Chemie-International Edition, 2024, 63, 33, 202407090.
- 3. Li, L.; Wang, L.; Jia, G.; Xu, L.; Chen, J.; Hu, Z. F.*; Yu, J. C.*, Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone. ACS Nano, 2024, 18, 48, 33142–33151.
- 4. Liu, B.; Li, Y.; Guo, Y.; Tang, Y.; Wang, C.; Sun, Y.; Tan, X.; Hu, Z. F.*; Yu, T.*, Regulating the Transfer of Photogenerated Carriers for Photocatalytic Hydrogen Evolution Coupled with Furfural Synthesis. ACS Nano, 2024, 18, 27, 17939–17949.
- 5. Liu, Y.; Huang, S.; Lu, J.; Niu, S.; Shen, P. K.; Hu, Z. F.*; Tsiakaras, P.*; Gao, S.*, Ni0.25 Cu0.5 Sn0.25 Nanometallic Glasses as Highly Efficient Catalyst for Electrochemical Nitrate Reduction to Ammonia. Advanced Functional Materials, 2024, 2411325.
- 6. Tang, Y.; Sun, Y.; Li, Y.; Guo, Y.; Liu, B.; Tan, X.; Hu, Z. F.*; Zhong, D.; Ye, J.; Yu, T.*, Photothermal Effect of Cu NCs on CdS Homojunction Boosting Hydrogen Evolution in Alkaline Seawater. Advanced Functional Materials, 2024, 34, 40, 2405527.
- 7. Wang, R.; Luo, H.; Sun, M.; Duan, C.; Zhou, Q.; Lu, Y.; Ou, Z.; Liu, H.; Luo, G.; Hu, Z. F.*, Characterization and H2O2 Production Mechanisms Study on Self-Oxidized Graphite during the Two-Electron Water Oxidation Electrochemical Process. Journal of Catalysis, 2024, 434, 115521.
- 8. Duan, C.; Lu, Y.; Ou, Z.; Sun, M.; Luo, G.; Liu, H.; Wang, R.; Wang, Y.; Hu, Z. F.*, Undervalued Role of Metal-Carbon Junction in Selective Generation of H2O2: An Example of the Zinc-Carbon Junction Edge Providing Asymmetric Active Sites for Efficient Oxygen Reduction. Chemical Engineering Journal, 2024, 500, 156975.
- 9. Zhang, X.; Zhou, Q.; Zhu, Y.; Cai, J.; Lu, Y.; Wang, R.; Duan, C.; Ou, Z.; Sun, M.; Luo, G.; Liu, H.; Hu, Z. F.*, Selective Electrocatalytic Oxidation of Ammonia to Nitrogen by Using Titanium Dioxide Nanorod Array Decorated with Ultrasmall Ir Nanoparticles and Non-Noble Metal Fe Nanoparticles. Separation and Purification Technology, 2024, 348, 127808.
- 10. Lu, Y.; Duan, C.; Wang, Y.; Wang, X.; Yin, Y.; Han, Q.; Ou, Z.; Luo, G.; Sun, M.; Li, G.; Hu, Z. F.*, Generation of H2O2 via Simultaneous Treatment of Cotton and Organic Pollutants in Textile Wastewater. Separation and Purification Technology, 2025, 355, 129567.
- 11. Lu, Y.; Yue, X.; Cai, J.; He, X.; Li, L.; Zhou, Q.; Duan, C.; Wang, R.; Sun, M.; Ou, Z.; Liu, H.; Luo, G.; Wang, X.; Yu, J. C.; Hu, Z. F.*, Synthesis of High-Efficiency Phosphatized Catalysts by Using Organophosphorus and Biomass for Photocatalytic Hydrogen Peroxide Production via Oxygen Reduction. Applied Catalysis B: Environment and Energy, 2024, 123771.
- 12. Zhou, Q.; Yan, Z.; Lan, Y.; Ou, Z.; Hu, R.; Wang, X.; Yang, Z.; Chen, Y.; Cai, J.; Lu, Q.; Wang, S.; Yu, J. C.; Li, L.; Hu, Z. F.*, A General Strategy to Enhance Hydrogen Peroxide Generation via Two-Electron Water Oxidation by Antimony Modification for Removal of Triethyl Phosphate and Hexavalent Chromium. Applied Catalysis B: Environment and Energy, 2024, 342, 123427.
- 13. Bai, X.*; Guo, L.; Jia, T.; Hu, Z. F.*, Superhydrophilic Covalent Organic Frameworks Accelerate Photocatalytic Production of Hydrogen Peroxide through Proton Channels. Journal of Materials Chemistry A,2024, 12, 22, 13116–13126.
- 14. Guo, W.; Wei, Q.; Li, G.; Wei, F.*; Hu, Z. F.*, A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation. Nanomaterials, 2024, 14, 11, 923.
- 15. Nie, Y.; Li, Y.; An, C.; Tan, X.; Hu, Z. F.*; Ye, J. Yu, T.*, Promoted Selectivity of Photocatalytic CO2 Reduction to C2H4 via Hybrid CuxCoSy Possessing Dual Unsaturated Sites. Applied Catalysis B: Environment and Energy, 2024, 345, 123704.
- 16. Yan, Z.*; Wang, K.; Wei, W.*; Zhao, X.; Jiang, Z.*; Hu, Z. F.*; Zhu, G., Comparison of Cost and Performance between Traditional and Green Processes for Producing Bimetallic Carbide Based Oxygen Reduction Electrocatalysts. International Journal of Hydrogen Energy, 2024, 94, 385–393.
- 17. Bian, J.; Zhang, W.; Ng, Y. H.; Hu, Z. F.; Wei, Z.; Liu, Y.; Deng, J.; Dai, H.*; Jing, L.*, Transforming Red Phosphorus Photocatalysis: Dual Roles of Pre‐anchored Ru Single Atoms in Defect and Interface Engineering. Angewandte Chemie-International Edition, 2024, 63, 45, e202409179.
- 18. Chen, Y.; Zhu, K.; Qin, W.; Jiang, Z.; Hu, Z. F.; Sillanpää, M.; Yan, K.*, Enhanced Electron Transfer Using NiCo2O4@C Hollow Nanocages with an Electron-Shuttle Effect for Efficient Tetracycline Degradation. Chemical Engineering Journal, 2024, 488, 150786.
- 19. Huang, Y.; Zhu, K.; Hu, Z. F.; Chen, Y.; Li, X.; Jiang, Z.; Sillanpää, M.; Zhao, J.; Qiu, R.; Yan, K.*, Solvent-Free Synthesis of Foam Board-like CoSe2 Alloy to Selectively Generate Singlet Oxygen via Peroxymonosulfate Activation for Sulfadiazine Degradation. Journal of Hazardous Materials, 2024, 466, 133611.
- 20. Kuang, C.; Wu, Y.; Zeng, G.; Zhou, Y.; Hu, Z. F.; Li, D.; Zhong, J.; Wang, R.; Yang, Y.; Li, C.*, Edge State Engineering of Nitrogen/Phosphorus Co-Doped Graphene Nanoribbons towards Electron-Transfer-Based Peroxydisulfate Activation. Separation and Purification Technology, 2024, 350, 127842.
- 21. Liu, B.; Zhang, B.; Liu, B.; Hu, Z. F.; Dai, W.; Zhang, J.; Feng, F.; Lan, B.; Zhang, T.; Huang, H.*, Surface Hydroxyl and Oxygen Vacancies Engineering in ZnSnAl LDH: Synergistic Promotion of Photocatalytic Oxidation of Aromatic VOCs. Environmental Science & Technology, acs.est.3c08860.
- 22. Lu, X.; Chen, Z.; Hu, Z. F.; Liu, F.; Zuo, Z.; Gao, Z.; Zhang, H.; Zhu, Y.; Liu, R.; Yin, Y.; Cai, Y.; Ma, D.*; Zhang, Q.*, Boosted Charge Transfer for Highly Efficient Photosynthesis of H2 O2 over Z‐scheme I− /K+ Co‐doped g‐C3 N4 /Metal–Organic‐frameworks in Pure Water under Visible Light. Advanced Energy Materials, 2024, 14, 38, 2401873.
- 23. Pei, X.; Bian, J.; Zhang, W.; Hu, Z. F.; Ng, Y. H.; Dong, Y.; Zhai, X.; Wei, Z.; Liu, Y.; Deng, J.; Dai, H.*; Jing, L.*, Overcoming Defect Limitations in Photocatalysis: Boron‐incorporation Engineered Crystalline Red Phosphorus for Enhanced Hydrogen Production. Advanced Functional Materials, 2024, 34, 29, 2400542.
- 24. Wang, K.; Hu, Z. F.; Yu, P.; Balu, A. M.; Li, K.; Li, L.; Zeng, L.; Zhang, C.; Luque, R.; Yan, K.*; Luo, H.*, Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction. Nano-Micro Lett, 2024, 16, 1, 5.
- 25. Xue, F.; Kang, S.*; Pan, Z.; Li, L.*; Hu, Z. F.; Sheng, X.; Li, B.; Lu, W.; Wang, L.; Nie, M., Mo-Based MXenes as Highly Selective Two-Electron Oxygen Reduction Catalysts for H2O2 Production. Electrochimica Acta, 2024, 491, 144356.
2023年
- 1. Li, L. J.; Hu Z. F.*; Kang, Y. Q.; Cao, S. Y.; Xu, L. P.; Yu, L.; Zhang, L. Z.*; Yu, J. C.*, Electrochemical Generation of Hydrogen Peroxide from a Zinc Gallium Oxide Anode with Dual Active Sites, Nature Communications,2023, 14 (1), 1890.
- 2. Zheng, N. C.; Li, L. J.; Tang, X. H.; Xie, W. Q.; Zhu, Q.; Wang, X. L.; Lian, Y. K.; Yu, J. C.; Hu, Z. F.*, Spontaneous Formation of Low Valence Copper on Red Phosphorous to Effectively Activate Molecular Oxygen for Advanced Oxidation Process, Environmental Science & Technology, 2023, 57 (12), 5024-5033. 封面文章
- 3. Zheng, N.; Tang, X.; Lian, Y.; Ou, Z.; Zhou, Q.; Wang, R.; Hu, Z. F.*, Low-Valent Copper on Molybdenum Triggers Molecular Oxygen Activation to Selectively Generate Singlet Oxygen for Advanced Oxidation Processes. Journal of Hazardous Materials, 2023, 452, 131210.
- 4. Chen, C. Y. Wang, X. L.; Pan, B. J.; Xie, W. Q.; Zhu, Q.; Meng, Y. L.; Hu, Z. F.*; Sun, Q. M.*, Construction of a novel cascade electrolysis-heterocatalysis system by using zeolite-encaged ultrasmall palladium catalysts for H2O2 generation, Small, 2023, 202300114.
- 5. Wang, C.; Tang, Y.; Geng, Z.; Guo, Y.; Tan, X.; Hu, Z. F.*; Yu, T.*, Modulating Charge Accumulation via Electron Interaction for Photocatalytic Hydrogen Evolution: A Case of Fabricating Palladium Sites on ZnIn2 S4 Nanosheets. ACS Catalysis, 2023, 13, 17, 11687–11696.
- 6. Wu, X.; Zhong, R.; Lv, X.; Hu, Z. F.*; Xia, D.; Li, C.; Song, B.*; Liu, S.*, Modulating G-C3N4-Based van Der Waals Heterostructures with Spatially Separated Reductive Centers for Tandem Photocatalytic CO2 Methanation. Applied Catalysis B: Environment and Energy, 2023, 330, 122666.
- 7. Xu, L. P.; Li, L. J.; Hu, Z. F.*; Yu, J. C.*, EDTA-enhanced photocatalytic oxygen reduction on K-doped g-C3N4 with N-vacancies for efficient non-sacrificial H2O2 synthesis, Journal of Catalysis, 2023, 418, 300.
- 8. Xu, L. P.; Li, L. J.; Hu, Z. F.*; Yu, J. C.*, Boosting alkaline photocatalytic H2O2 generation by incorporating pyrophosphate on g-C3N4 for effective proton shuttle and oxygen activation, Applied Catalysis B-Environmental, 2023, 328. 122490.
- 9. Dong, T.; Ji, J.; Yu, L.; Huang, P.; Li, Y.; Suo, Z.; Liu, B.; Hu, Z. F.; Huang, H.*, Tunable Interfacial Electronic Pd–Si Interaction Boosts Catalysis via Accelerating O2 and H2 O Activation. JACS Au, 2023, 3, 4, 1230–1240.
- 10. Li, F.; Tang, X.; Hu, Z. F.; Li, X.; Li, F.; Xie, Y.; Jiang, Y.; Yu, C.*, Boosting the Hydrogen Peroxide Production over In2S3 Crystals under Visible Light Illumination by Gallium Ions Doping and Sulfur Vacancies Modulation, Chinese Journal of Catalysis, 2023, 55, 253–264..
- 11. Liu, B.; Hu, Z. F.; Zhang, B.; Liu, B.; Li, G.; Zhang, T.; Ji, J.; Li, K.; Dai, W.; Zhang, J.; Huang, H.*, Deep Photocatalytic Oxidation of Aromatic VOCs on ZnSn LDH: Promoting Role of Electron Enrichment of Surface Hydroxyl. ACS Catalysis, 2023, 13, 12, 7857–7867.
- 12. Lu, Q.; Xu, X.; Fang, W.; Wang, H.; Liang, Z.; Cai, R.; Hu, Z. F.; Shim, H.; Rossetti, S.; Wang, S.*, Metal(Loid)s in Organic-Matter-Polluted Urban Rivers in China: Spatial Pattern, Ecological Risk and Reciprocal Interactions with Aquatic Microbiome. Journal of Hazardous Materials, 2023, 457, 131781.
- 13. Ye, S.; Lian, X.; Liu, B.; Huang, H.*; Zhang, B.; Hu, Z. F.; Fu, X.; Li, G.; Zhang, Z., Deep Oxidation of Toluene via Combining a Bifunctional Catalyst with VUV Photolysis. Applied Catalysis B: Environment and Energy, 2023, 334, 122802.
- 14. Zhang, M.; Xu, Z.; Liu, B.; Duan, Y.; Zheng, Z.; Li, L.; Zhou, Q.; Matveeva, V. G.; Hu, Z. F.; Yu, J.; Yan, K.*, Anchoring Hydroxyl Intermediate on NiCo(OOH) x Nanosheets to Enable Highly Efficient Electrooxidation of Benzyl Alcohols. AIChE Journal, 2023, 69, 7, e18077.
2022年
- 1. Ou, H.; Ning, S.; Zhu, P.; Chen, S.; Han, A.; Kang, Q.; Hu, Z. F.*; Ye, J.*; Wang, D.; Li, Y.*, Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2 Conversion. Angewandte Chemie-International Edition, 2022 62, 202206579
- 2. Ou, H.; Li, G.; Ren, W.; Pan, B.; Luo, G.; Hu, Z. F.*; Wang, D.*; Li, Y.*,, Atomically Dispersed Au Assisted C-C Coupling on Red Phosphorus for CO2 Photoreduction to C2H6.Journal of the American Chemical Society, 2022. 144, 48, 22075
- 3. Yan, Z.*; Zhang, Y.; Jiang, Z.*; Jiang, D.; Wei, W.; Hu, Z. F.*, Nitrogen-Doped Bimetallic Carbide-Graphite Composite as Highly Active and Extremely Stable Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Advanced Functional Materials, 2022. 2204031
- 4. Zheng, N. C.; He, X.; Zhou, Q.; Wang, R. L.; Zhang, X. R.; Hu, R. T.; Hu, Z. F.*, Generation of reactive chlorine species via molecular oxygen activation on a copper chloride loaded hydrothermal carbonaceous carbon for advanced oxidation process. Applied Catalysis B-Environmental, 2022, 319.
- 5. Zheng, N.; He, X.; Hu, R.; Wang, R.; Zhou, Q.; Lian, Y.; Hu, Z. F.*, In-Situ Production of Singlet Oxygen by Dioxygen Activation on Iron Phosphide for Advanced Oxidation Processes. Applied Catalysis B-Environmental, 2022, 307, 121918.
- 6. Yan, C.; Luo, W.; Yuan, H.; Liu, G.; Hao, R.; Qin, N.; Wang, Z.; Liu, K.; Wang, Z.; Cui, D.*; Hu, Z. F.*; Lan, Y.*; Lu, Z*., Stabilizing Intermediates and Optimizing Reaction Processes with N Doping in Cu2O for Enhanced CO2 Electroreduction. Applied Catalysis B-Environmental, 2022, 308.
- 7. Li, L.; Xu, L.; Chan, A. W. M.; Hu, Z. F.*; Wang, Y.; Yu, J. C.*, Direct Hydrogen Peroxide Synthesis on a Sn-Doped Cuwo4/Sn Anode and an Air-Breathing Cathode. Chemistry of Materials, 2022, 34, 63-71.
- 8. Zheng, N.; Lian, Y.; Zhou, Q.; Wang, R.; He, X.; Hu, R.; Hu, Z. F.*, An Effective Fenton Reaction by Using Waste Ferric Iron and Red Phosphorus. Chemical Engineering Journal, 2022, 437.
- 9. Hu, Z. F.*; Huang, Y.; He, X.; Guo, W.; Yan, K.*, Solution-Phase Conversion of Glucose into Semiconductive Carbonaceous Nanosheet Photocatalysts for Enhanced Environmental Applications. Chemical Engineering Journal, 2022, 427.
- 10. Li, L.; Xiao, K.; Wong, P. K.; Hu, Z. F.*; Yu, J. C.*, Hydrogen Peroxide Production from Water Oxidation on a Cuwo4 Anode in Oxygen-Deficient Conditions for Water Decontamination. ACS Applied Materials & Interfaces, 2022, 14, 7878-7887.
- 11. Li, G.; Hu, Z. F.*, Bottom-up Synthesis of Semiconductive Carbonaceous Nanosheets on Hematite Photoanode for Photoelectrochemical Water Splitting. Nano Research, 2022, 15, 627-636.
- 12. Zheng, N.; Zhou, Q.; Wang, R.; Lian, Y.; He, X.; Hu, R.; Hu, Z. F.*, Rust Triggers Rapid Reduction of Cr-6+ by Red Phosphorus: The Importance of Electronic Transfer Medium of Fe-3+. Chemosphere, 2022, 303.
- 13. He, Z.; Zheng, N.; Zhang, L.; Tian, Y.; Hu, Z. F.*; Shu, L.*, Efficient Inactivation of Intracellular Bacteria in Dormant Amoeba Spores by Fep. Journal of Hazardous Materials, 2022, 425.
- 14. Cai, J.*; Yang, F.; Zhu, J.; Si, L.; Shi, X.; Shao, L.; Sun, Z.; Hu, Z. F.*; Shen, P.*, Hierarchical Hollow Mixed Metal Sulfides Microspheres Assembly from Nis Nanoparticles Anchored on Mos2 Nanosheets and Coated with N-Doped Carbon for Enhanced Sodium Storage. Journal of Alloys and Compounds, 2022, 895.
- 15. Wu, Y.; Chen, X.; Cao, J.; Zhu, Y.; Yuan, W.; Hu, Z. F.; Ao, Z.; Brudvig, G. W.; Tian, F.; Yu, J. C.; Li, C.*, Photocatalytically Recovering Hydrogen Energy from Wastewater Treatment Using MoS2 @TiO2 with Sulfur/Oxygen Dual-Defect. Applied Catalysis B-Environmental, 2022, 303.
2021年
- 1. Li, L. J.; Xu, L. P.; Hu, Z. F.*; Yu, J. C.* Enhanced Mass Transfer of Oxygen through a Gas–Liquid–Solid Interface for Photocatalytic Hydrogen Peroxide Production, Advanced Functional Materials 2021, 202106120.
- 2. Hu, Z. F.*; Guo, W., Fibrous Phase Red Phosphorene as a New Photocatalyst for Carbon Dioxide Reduction and Hydrogen Evolution. Small 2021, 2008004.
- 3. Xu, L. P.; Li, L. J.; Liu, Y.; Hu, Z. F.* Yu, J. C.* Fabrication of a Photocatalyst with Biomass Waste for H2O2 Synthesis, ACS Catalysis 2021, 11, 14480−14488.
- 4. Lu, Y. L.(2018级本科生); Liu M. H. (2018级本科生); Zheng, N. C.; He, X.; Hu, R. T.; Wang, R. L.; Zhou, Q.; Hu, Z. F.* Promoting the Protonation Step on the Interface of Titanium Dioxide for Selective Photocatalytic Reduction of CO2 to CH4 by Using Red Phosphorus Quantum Dots, Nano Research 2021. 2021, 15, 3042-3049.
- 5. Hu, Z. F.*; Lu, Y. L. (2018级本科生); Liu, M. H. (2018级本科生); Zhang, X. Y(2017级本科生). Cai, J. J.* Crystalline red phosphorus for selectively photocatalytic reduction of CO2 into CO. Journal of Materials Chemistry A 2021, 9, 338-348.
- 6. Xu, L.; Liu, Y.; Hu, Z. F.*; Yu, J. C.*, Converting Cellulose Waste into a High-Efficiency Photocatalyst for Cr(Vi) Reduction Via Molecular Oxygen Activation. Applied Catalysis B: Environment and Energy2021, 295, 120253.
- 7. Zheng, N.; He, X.; Hu, R.; Guo, W.; Hu, Z. F,*, Co-activation of persulfate by cation and anion from FeP for advanced oxidation processes, Applied Catalysis B: Environment and Energy 2021, 298, 120505.
- 8. Peng, Y.; He, X.; Zheng, N.; Hu, R.; Guo, W.; Hu, Z. F,* Transferring waste of biomass and heavy metal into photocatalysts for hydrogen peroxide activation. Chemical Engineering Journal 2021, 420, 129867.
- 9. Liu, Y.; Hu, Z. F*; Yu, J. C.*, Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere2021, 278, 130376.
- 10. Lan, Y.; Kang, S.; Cui, D.*; Hu, Z. F.*, A High-Efficiency Hematite Photoanode with Enhanced Bonding Energy around Fe Atoms. Chemistry-A European Journal2021, 27, 4089-4097.
- 11. Hu, Z. F.*; Guo, W., New Insight into the Effect of Interface Supercapacitance on the Performance of Titanium Dioxide/Carbon Nanowire Array for Photoelectrochemical Water Oxidation. Chinese Chemical Letters 2021, 32 (11), 3359-3363..
- 13. Zheng, N.; He, X.; Guo, W.; Hu, Z. F.*, Enhancement of Mass Transfer Efficiency and Photoelectrochemical Activity for Tio2 Nanorod Arrays by Decorating Ni3+-States Functional Nio Water Oxidation Cocatalyst. Chinese Chemical Letters 2021 32, 6, 1993-1997
- 14. Wu, Y.; Hu, Y.; Han, M.; Ouyang, Y.; Xia, L.; Huang, X.; Hu, Z. F.; Li, C.*, Mechanism Insights into the Facet-Dependent Photocatalytic Degradation of Perfluorooctanoic Acid on Biocl Nanosheets. Chemical Engineer Journal 2021, 425, 130672.
- 15. Yang, Z.; Li, X.; Huang, Y.; Chen, Y.; Wang, A.; Wang, Y.; Li, C.; Hu, Z. F; Yan, K.*, Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics. Journal of Cleaner Production (IF=9.30). 2021, 310, 127584.
2020年
- 1. Li, L. J.; Hu, Z. F.*; Yu, J. C.* On-Demand Synthesis of H2O2 by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation, Angewandte Chemie International Edition, 2020, 59, 20538-20544.
- 2. He, X.; Zheng, N. C.; Hu, R. T.; Hu, Z. F.*; Yu, J. C.* Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments, Advanced Functional Materials, 2020, 2006505.
- 3. Hu, Z. F.; Liu, W. W(2016级本科生). Conversion of Biomasses and Copper into Catalysts for Photocatalytic CO2 Reduction. ACS Applied Material & Interface (IF=8.81) 2020, 46, 51366-51373
- 4. Liu, Y.; Hu, Z. F.*; Yu, C. J.*; Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets. Chemistry of Materials, 2020, 32, 1475-1487. Journal Cover.
- 5. Lan, Y. C.; Niu, G. Q.; Wang, F.; Cui, D. H.*; Hu, Z. F.*, SnO2-Modified Two-Dimensional CuO for Enhanced Electrochemical Reduction of CO2 to C2H4, ACS Applied Material & Interface, 2020, 12, 36128-36136.
- 6. Hu, Z. F.*; Gong, J. B.; Ye, Z.; Liu, Y.; Xiao, X. D.; Yu, J. C.* Cu(In,Ga)Se2 for selective and efficient photoelectrochemical conversion of CO2 into CO, Journal of Catalysis, 2020, 384, 88-95.
- 7. Kang, S.; Xia, F.; Hu, Z. F.*; Hu, W.; She, Y.; Wang, L.; Fu, X.; Lu, W. Q.* Platinum nanoparticles with TiO2–skin as a durable catalyst for photoelectrochemical methanol oxidation and electrochemical oxygen reduction reactions, Electrochimica Acta (IF=6.90) 2020, 343, 136119.
- 8. Peng, Y.; Kang, Shuai,*; Hu, Z. F.* Pt Nanoparticle-Decorated CdS Photocalysts for CO2 Reduction and H2 Evolution. ACS Applied Nano Material, 2020, 3, 9, 8632-8639.
- 9. Ye, Z.; Hu, Z. F.; Yang, L. X.; Xiao, X.D. Stable p-type Cu:CdS1-xSex/Pt Thin-Film Photocathodes with Fully Tunable Bandgap for Scavenger-Free Photoelectrochemical Water Splitting. Solar RRL (IF=7.52) 2020, 1900567
- 10. Li, T. H.; Kang, S.; Zhang, X.; Fu, X.; Feng, S. L.; Hu, Z. F.; Zhu, D. L.; Lu, W. Q. Improved hydrogen evolution at high temperature using an electro-thermal method. Journal of Physics D: Applied Physics (IF=3.17). 2020, 53 185302
- 11. Efficient Electronic Transport in Partially Disordered Co3O4 Nanosheets for Electrocatalytic Oxygen Evolution Reaction. Li, L. J.; Hu, Z. F.; Tao, L.; Xu, J. B.; Yu, J. C. ACS Applied Energy Materials (IF=4.47) 2020, 3, 3071-3081
2019年
- 1. Liu, Y.; Hu, Z. F.*; Yu, J. C.*, Liquid bismuth initiated growth of phosphorus microbelts with efficient charge polarization for photocatalysis. Applied Catalysis B: Environment and Energy, 2019, 247, 100-106.
- 2. Lan, Y. C.; Xie, Y. Z.; Chen, J. X.; Hu, Z. F.*; Cui, D. H.* Selective photocatalytic CO2 reduction on copper-titanium dioxide-a study of the relationship between CO production and H2 suppression. Chemical Communications 2019, 55, 8068-8071. Journal Cover
- 3. Zhang, Y. T.; Shen, Z. R.*; Xin, Z. K.; Hu, Z. F.*; Ji, H. M. Interfacial charge dominating major active species and degradation pathways: An example of carbon based photocatalyst. Journal of Colloid and Interface Science, 2019, 554, 743-751.
- 4. Yang, Y. L.; Hu, Z. F.*; Ma, J. M.*; 2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters (IF=6.62). 2019, 30, 2089-2109.
2018年前
- 1. Hu, Z. F.; Yuan, L. Y.; Liu. Z. F.; Shen. Z. R.* ; Yu, J. C.* An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency, Angewandte Chemie International Edition, 2016, 55, 9580-9585. hot paper and inside back cover.
- 2. Hu, Z. F.; Liu, G.; Chen. X. Q.; Shen. Z. R.*; Yu, J. C.*Enhancing charge separation in metallic photocatalysts: a case study of the conducting molybdenum dioxide, Advanced Functional Materials, 2016, 26, 4445-4455.
- 3. Hu, Z. F.; Shen, Z. R.*; Yu, J. C.* Converting Carbohydrates to Carbon-based Photocatalysts for Environmental Treatment. Environmental Science & Technology, 2017, 51. 7076-7083.
- 4. Hu, Z. F.; Shen, Z. R.*; Yu, J. C.* Covalent Fixation of Surface Oxygen Atoms on Hematite Photoanode for Enhanced Water Oxidation. Chemistry of Materials, 2016, 28, 564-572.
- 5. Hu, Z. F.; Shen, Z.*; Yu, J. C.*; Cheng, F., Intrinsic defect based homojunction: A novel quantum dots photoanode with enhanced charge transfer kinetics. Applied Catalysis B: Environment and Energy, 2017, 203, 829-838.
- 6.Hu, Z. F.; Shen, Z. R.*; Yu, J. C.*, Phosphorus containing materials for photocatalytic hydrogen evolution. Green Chemistry, 2017, 19, 588-613.
- 7. Hu, Z. F.; Xu, M. K.; Shen, Z. R.*; Yu, J. C.* A nanostructured chromium (III) oxide/ tungsten (VI) oxide p-n junction photoanode toward enhanced faradaic efficiency for water oxidation. Journal of Materials Chemistry A, 2015, 3, 14046-14053.
- 8. Hu, Z. F.; Yu, J. C*; Ming, T; Wang, J. F. A wide-spectrum-responsive TiO2 photoanode for photoelectrochemical cells. Applied Catalysis B: Environment and Energy, 2015, 168-169, 483-489.
- 9. Hu, Z. F.; Yu, J. C.* Pt3Co-loaded CdS and TiO2 for photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2013, 1, 12221-12228.
- 10. Hu, Z. F.; Yan, Z. X.; Shen, P. K.*; Zhong, C. J. Nano-architectures of ordered hollow carbon spheres filled with carbon webs by template-free controllable synthesis. Nanotechnology, 2012, 23, 485404.
- 11. Hu, Z. F.; Chen, C.; Meng, H.; Wang, R. H.; Shen, P. K.*; Fu, H. G. Oxygen reduction electrocatalysis enhanced by nanosized cubic vanadium carbide. Electrochemistry Communications, 2011, 13, 763-765.
- 12 Ye, M.Y.; Zhao, Z. H.; Hu, Z. F.; Liu, L. Q.; Ji, H. M.; Shen, Z. R.*; Ma, T. Y.*, 0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible-Light-Driven Photocatalysis. Angewandte Chemie International Edition, 2017, In press
- 13. Cai, Q.; Hu, Z. F.*; Zhang, Q.; Li, B.; Shen, Z.*, Fullerene (C60)/CdS nanocomposite with enhanced photocatalytic activity and stability. Applied Surface Science, 2017, 403, 151-158.
- 14. Jin, Z. X.; Hu, Z. F.; Yu, J. C.*; Wang, J. F., Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 13736-13741.
- 15. Li, Y. C.; Zhang, L.; Hu, Z. F.; Yu, J. C.* Synthesis of 3D Structured Graphene as High Performance Catalyst Support for Methanol Electrooxidatio. Nanoscale, 2015, 7, 10896-10902.
- 16. Shen, Z. R.; Hu, Z. F.; Wang, W. J.; Lee, S. F.; Chan, D. K. L.; Li, Y. C; Gu, T.; Yu, J. C.* Crystalline phosphorus fibers: controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale,2014, 6, 14163-14167.
- 17. Yan, Z. X.; Hu, Z. F.; Chen, C.; Meng, H.; Shen, P. K.*; Ji, H. B.; Meng, Y. Z. Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation. Journal of Power Sources,2010, 195, 7146-7151.
- 18. Fei, L. F.; Sun, T. Y.; Lu, W.; An, X. Q.; Hu, Z. F.; Yu, J. C.; Zheng, R. K.; Li, X. M.; Chan, H. L. W.; Wang, Y.* Direct observation of carbon nanostructure growth at liquid-solid interfaces. Chemical Communications (IF=6.32) 2014, 50, 826-828.
- 19. Chan, D. K. L.; Yu, J. C.*; Li, Y.; Hu, Z. F., A metal-free composite photocatalyst of graphene quantum dots deposited on red phosphorus. Journal of Environmental Sciences, 2017, 60, 91-97.
20. Ren, S.*; Ye, Z. C.; Hu, Z. F.; Bai, Y. F.; Du, W. Z.; Qin, X. Z. Synthesize of ZnO Nanobelt Arrays by Solid Thermal Oxidation with Au Catalyst. Acta Scientiarum Naturalium Universitatis Sunyatseni. 2008, 47, 47-50.
发表专著
- Liu, Y.; Li, J.; Hu, Z. F.; Yu, J. C. Photocatalytic Property of Phosphorus. Fundamentals and Applications of Phosphorous Nanomaterials. 2019, Chapter 8, Ed: Hai-Feng (Frank) Ji, pp 155-177 American Chemical Society, Washington, DC, USA, 2019, (ISBN: 9780841236554).
第一发明人授权专利
- 1. 一种利用超富集植物制备二氧化碳还原光催化剂的办法, 专利, 胡卓锋; 何茜; 彭妤; 郑宁超, 申请时间: 2020-1-18, 中国, 202010055787.7. 已授权2021-6-8
- 2. 一种利用糖类和金属离子制备二氧化碳还原光催化剂的方法, 专利, 胡卓锋; 彭妤; 何茜; 郑宁超, 申请时间: 2020-1-18, 中国, 202010055779.2. 已授权2021-6-8
- 3. 一种利用过硫酸盐活化去除布洛芬的方法, 专利, 胡卓锋;郑宁超;何茜;彭妤,申请时间: 2020-6-3,中国, 202010492665.4. 已授权
- 4. 一种水热碳铜光催化剂的制备及其去除布洛芬的方法,专利,胡卓锋,郑宁超,何茜,胡睿婷,申请时间: 2020-8-28, 中国, 202010880987.6,已授权
- 5. 一种二维水热碳纳米片材料的制备方法及其应用,专利,胡卓锋,何茜,郑宁超,胡睿婷,申请时间: 2020-8-28, 中国, 202010879855.1已授权
- 6. 一种利用红磷来实现三价铁/过硫酸盐体系高效降解环境污染物的方法, 专利, 胡卓锋,郑宁超,胡睿婷,何茜;申请时间: 2021-6-10,中国,2021106543529,已授权
- 7. 一种利用无定形红磷促进三价铁/过氧化氢体系降解环境污染物的方法, 专利, 胡卓锋,郑宁超,胡睿婷,何茜;申请时间: 2021-6-10,中国,202110647997X,已授权
- 8. 一种红磷光电极及其制备方法和应用, 专利, 胡卓锋,卢映龙,刘铭浩;申请时间: 2021-5-17,中国, 202110531578.X, 已授权
- 9. 一种无牺牲剂的光催化产双氧水方法, 专利, 胡卓锋,何茜,郑宁超,胡睿婷,申请时间: 2021-7-6,中国 202110757870.3, 已授权
- 10.一种利用单原子铜耦合红磷活化分子氧降解布洛芬的方法,专利, 胡卓锋,郑宁超,周泉,汪睿林,申请时间: 2022-10-4,中国 202210412344.8, 已授权
- 11. 一种红磷复合材料光催化二氧化碳还原制备乙烯与乙烷的方法,专利,胡卓锋,潘伯菊,罗光辉,李辉,姜卢晨,陈彩依,王一一,罗灏,申请时间2022-10-7, 中国 202210708702.X,已授权
- 12. 一种羧基氧化石墨及其制备方法和在制备双氧水中的应用,专利,胡卓锋,汪睿林,张欣然,周泉,郑宁超,何茜,胡睿婷,申请时间2022-03-09, 中国 202210234683.1,已授权
- 13. 一种基于水氧化原位制备并活化过氧化氢的方法及其应用,专利,胡卓锋,胡睿婷,郑宁超,何茜,周泉,申请时间2022-06-30, 中国 2021 1 0743713.7,已授权
- 14. 一种定向灭活阿米巴体内细菌的方法及其应用,专利,胡卓锋,舒龙飞;郑宁超;何祯珍,申请时间2021-08-16, 中国 2021 1 0937874.X,已授权
学生培养:
郑宁超,2019级研究生,获得国家奖学金,汪淑钧奖学金,2023年中山大学环境学院优秀博士毕业论文,毕业后到湖南省南华大学任教授
汪睿林,2020级研究生,以单独一作身份在Nature Communications上发表论文
何茜,2019级研究生,2021年获得国家奖学金,2022年中山大学环境学院优秀毕业论文
陈彩依,2020级本科生,本科三年级时在Small以第一作者身份发表论文,保送北京大学读研
王小丽,2021级本科生,本科二年级时在Small以第二作者身份发表论文,保送北京大学读研
卢映龙,2018级本科生,本科四年级时在Nano Research以第一作者身份发表论文;本科三年级时在Journal of Materials Chemistry A (IF= 12.7,一区) 以第二作者身份(导师一作)发表论文
刘铬浩,2018级本科生,本科四年级时在Nano Research以第二作者身份发表论文;本科三年级时在Journal of Materials Chemistry A以第三作者身份发表论文
刘唯为,2016级本科生,本科四年级时在ACS Applied Material & Interface (IF=8.81,一区)以第二作者(导师一作)发表论文,成功申请英国布里斯托大学研究生
潘伯菊,2020级本科生,本科二年级时在Journal of the American Chemical Society (IF=16.38, 一区) 以第四作者身份发表论文
罗光辉,2019级本科生,本科三年级时在Journal of the American Chemical Society (IF=16.38, 一区) 以第五作者身份发表论文
谢伟乔,2021级本科生,本科二年级时在Environmental Science & Technology(IF-11.35, 一区)以第四作者身份发表论文
张孝越,2017级本科生,保送研究生到哈尔滨工业大学
朱悦蓝,2017级本科生,成功申请美国哥伦比亚大学研究生
范亚新,2016级本科生,保送研究生到上海交通大学